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Homoclinic bifurcations in a liquid
crystal flow
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(Received 28 July 1999 and in revised form 27 September 2000)

The results of an experimental study of electrohydrodynamic convection in a liquid
crystal are presented. Investigations concerned a small-aspect-ratio device so that finite
geometry effects could be exploited to study the mechanisms by which complicated
flows were organized. The results have been related to ideas on Shil’nikov dynamics
and gluing bifurcations in low-dimensional dynamical systems.

1. Introduction
The work of Shil’nikov (1965) and Sparrow (1982) initiated the notion that homo-

clinic bifurcations are important in providing organizing centres for chaotic dynamics.
Subsequently, experimental investigations of the transition to disordered fluid motion
have sought to directly interpret observed behaviour in terms of these low-dimensional
models. Studies have principally focused on the problems of Taylor–Couette flow be-
tween rotating cylinders and Rayleigh–Bénard convection in heated fluid layers. A
modern review of this work is given by Cross & Hohenberg (1993) who also discuss
applications in other fields. Numerical studies looking to identify homoclinic bifurca-
tions in fluid systems have typically been concerned with models comprising sets of
ordinary differential equations that arise as a projection of the governing equations of
motion, with the classic example being that of Lorenz (1963). The behaviour found
in these models is often difficult to reproduce experimentally. Nevertheless, they are
instructive since they often highlight physically relevant and important ideas.

Using a combined numerical and experimental approach, a clear example of com-
plicated dynamics in Taylor–Couette flow arising via a homoclinic bifurcation was
reported by Mullin & Price (1989). In this instance a model was proposed for the
behaviour, based on numerical results obtained using the Navier–Stokes equations by
Mullin, Tavener & Cliffe (1989). In general, however, establishing a rigorous connec-
tion with physical flow problems has proven difficult, and it remains an outstanding
problem to successfully relate the mathematics directly to experiments.

A flow problem that has become the focus of recent attention is convection in
an electrically driven nematic liquid crystal, as reviewed by Kramer & Pesch in the
book by Buka & Kramer (1996). A nematic is a complex fluid composed of rod-like
molecules which possess orientational but not positional order. In practice it is possi-
ble to impose a preferred orientation on the director (a unit vector that characterizes
local molecular orientation) by using minor forces, such as the guiding effect pro-
vided by surface treatment of bounding walls. A nematic exhibits complicated flow
properties due to a coupling between translational and orientational motions of the

† Present address: Department of Mathematics, Massachusetts Institute of Technology, Cam-
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molecules. If an electric field is applied to an appropriately aligned nematic confined
between parallel glass plates, convection can occur above a critical field strength. This
phenomenon is commonly known as electroconvection, and was first explained by
Helfrich (1969). Associated with the convection is a distortion of the director field,
which is manifested as a spatially varying refractive index. This enables flow to be
observed directly as an intensity pattern formed by the focusing and defocusing of
transmitted light.

Experimental investigations of electroconvection have typically been concerned with
large-aspect-ratio systems, containing many convection rolls. Under these conditions it
is assumed that one can describe the onset of convection, and subsequent transitions,
using general arguments about pattern formation in non-equilibrium systems (Buka
& Kramer 1996). In these circumstances it is difficult to investigate low-dimensional
dynamics since the multiplicity of flows can be immeasurably large. Furthermore,
the potential for clear observations is obscured by inevitable fluctuations that cause
the system to jump between the many coexisting states. However, small-aspect-
ratio electroconvection experiments can exhibit low- and high-dimensional behaviour
(Tsuchiya, Horie & Itakura 1988; Peacock, Binks & Mullin 1999), providing an
opportunity for detailed investigation of the transition to complicated fluid motion in
a novel fluid system. In addition, an earlier investigation by Binks & Mullin (1997)
has shown that the selection of the steady solution set can be understood in terms of
ideas from singularity theory.

Here results are presented of an experimental investigation of flows in a small-
aspect-ratio liquid-crystal cell. Within two distinct regions of parameter space this
system behaved in a manner consistent with established models of homoclinic bifur-
cations. Before presenting these results, the experimental arrangement is described,
along with some general observations on the flows involved.

2. The experiment
The liquid crystal cell comprised a 46± 1.0 µm thick layer of nematic BDH-17886†

sandwiched between two optically flat glass plates, and a schematic of this device
is shown in figure 1. An indium-tin oxide line electrode was etched onto the inner
surface of each plate. On the upper glass plate the width of the line electrode was
188.6±2.0 µm and on the bottom plate the width was 183.8±2.0 µm. The arrangement
of the plates was such that, when viewed from above, the line electrodes overlapped
at right angles. This created an active region of aspect ratio 4.0± 0.1 : 4.1± 0.1 : 1.0 to
which an a.c. electric field could be applied. Using a sodium vapour lamp, Newton’s
fringes were observed and the maximum depth variation across the active region of the
cell was calculated to be 0.02 µm. Alignment of the material, which was parallel to the
lower electrode, was obtained using a rubbed layer of poly-vinyl alcohol spin coated
on top of the electrodes. The cell was mounted on a microscope translation stage and
maintained at a constant temperature of 32.0± 0.02 ◦C. Applied a.c. voltages were of
the order of 10Vrms and had a frequency of the order of 600 Hz. These parameters
had a long-term stability of better than 0.5%. Light transmitted through the cell
was imaged using a CCD camera and a computer imaging system. To facilitate flow
visualization the plane of focus of the microscope was positioned above the liquid-
crystal cell so that bright intensity lines corresponded to upwards fluid motion and
fainter intensity lines to downwards fluid motion (Rehberg, Horner & Hartung 1991).

† Made by Merck Ltd, Merck House, Poole, Dorset, BH15 1TD, UK.
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Figure 1. Schematic of the liquid-crystal cell. The unit vector n indicates the preferred molecular
orientation, which is parallel to the lower line electrode.
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Figure 2. Image of eight-roll flow. A set of x, y reference axes have been placed around the image
to provide a coordinate system for locating flow features. The units for the axes are microns and
the original alignment of the director is left to right.

As described by Binks & Mullin (1997), within a particular voltage and frequency
range an eight-roll flow was primary according to the definition of Benjamin (1978), i.e.
it smoothly evolved from the undisturbed nematic as the voltage, V , was continuously
increased or the frequency, F , was continuously reduced. An image of the eight-roll
flow is presented in figure 2, in which bright lines correspond to upwards flow and
fainter lines to downwards flow. A set of reference axes have been included in the
figure to aid the description of flow features later on in the paper. In neighbouring
regions of parameter space the primary flow comprised six or ten convection rolls.
By systematically varying V and F experimental bifurcation sequences could be
determined for the eight-roll flow. For the purpose of recording transition values a
non-dimensional scheme similar to that introduced by Kai & Hirakawa (1978) was
used, where a voltage reference value, Vref , was defined to be the lowest voltage at
which the eight-roll flow was primary. In a like manner, the frequency reference value,
Fref , was defined to be the highest frequency at which a six-roll flow was primary.
The non-dimensionalized variables were therefore V = V/Vref and F = F/Fref . The
location of a bifurcation point in (V , F) parameter space could typically be determined
with an accuracy of 0.1%.
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Figure 3. Sequence of images taken from the mixed-mode flow at (V , F) = (1.588, 1.409). This flow
comprises a combination of eight and ten convection rolls.

3. Experimental observation of Shil’nikov dynamics
For V > 1.037 the eight-roll flow underwent a Hopf bifurcation as F was continu-

ously reduced, as reported in Peacock et al. (1999). The resulting periodic flow com-
prised a ‘breaking’ and ‘joining’ of the convection rolls. As F was further reduced the
eight-roll time-dependent flow underwent a hysteretic transition to a time-dependent
mixed-mode state. A sequence of images depicting the mixed-mode state is presented
in figure 3. In the top-left image the system resembles a steady ten-roll flow, which
then evolves into an oscillating pattern comprising features of both eight and ten
convection rolls, and contains a so-called ‘defect’ (Braun, Rasenat & Steinberg 1991;
Kaiser & Pesch 1993) where the rolls do not match across the middle of the cell. The
amplitude of oscillation decreases and the flow then returns to ten convection rolls
before the cycle repeats.

Further illustration of the mixed-mode dynamics is provided by the time series
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Figure 4. Time series taken from the mixed-mode at (V , F) = (1.588, 1.409). The ordinate x is the
lateral position of the selected maximum in the intensity pattern.

in figure 4. This was obtained in the following manner. Across a horizontal row of
pixels there existed clear intensity maxima that corresponded to upwards flow. For
eight-roll flow there were three such maxima and for ten-roll flow there were four.
One maximum was selected and its horizontal displacement tracked throughout the
oscillation. This measure was first used by Yang et al. (1986) and the nature of the
time series obtained was, for the most part, found to be independent of the choice
of intensity maximum. For the purpose of obtaining the time series presented in this
section the chosen maximum was at the location (x, y) = (−20,−50) as this gave
the best signal-to-noise ratio. In figure 4 a flat line in the time series corresponds
to the system resembling a steady ten-roll flow. Mixed-mode oscillations, containing
features of both eight and ten convection rolls, evolve rapidly from this state and
then decay as the system returns to the steady ten-roll flow. This sequence of events is
then repeated in a highly regular manner. For the time series presented the duration
of a mixed-mode oscillation was of the order of 250 s.

The subsequent evolution of the mixed-mode flow with variation of the control
parameters was analogous to a low-dimensional model described by Shil’nikov (1965).
A description of this model is given in the following subsection. The experimental
results are then presented and a comparison is drawn with the model.

3.1. The Shil’nikov mechanism

A phase portrait of an orbit homoclinic to a saddle-focus is shown in figure 5,
depicting trajectories that spiral in on a plane towards the unstable fixed point
and are ejected in a perpendicular direction. Shil’nikov (1965) first proved theorems
concerning the stability and existence of periodic orbits in the neighbourhood of
phase space containing such an orbit. Thereafter, an explicit description of how a
periodic orbit becomes homoclinic to a saddle-focus as a bifurcation parameter is
varied was provided by Glendinning & Sparrow (1984).

Assuming the eigenvalues of the saddle-focus to be of the form λ1 and −λ2 ± iω
(λ1, λ2, ω > 0) the nature of the approach to homoclinicity is determined by the ratio
of the stable and unstable eigenvalues δ = λ2/λ1. When δ > 1 the orbit period
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Figure 5. Phase portrait of an orbit homoclinic to a saddle-focus.
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Figure 6. Bifurcation diagrams illustrating the homoclinic approach to a saddle focus. Solid
(dashed) lines indicate stable (unstable) periodic orbits. (a) δ > 1, (b) 1/2 < δ < 1.

increases monotonically towards infinity as the bifurcation point is reached, and the
periodic orbit is stable throughout the homoclinic approach. An illustration of this
behaviour is given in figure 6(a), which contains a bifurcation diagram of the period
plotted as a function of the bifurcation parameter µ. When 1/2 < δ < 1 the scenario
is more complex and a homoclinic orbit arises in a sequence of periodic folds and
period-doubling cascades, as shown by the schematic bifurcation diagram in figure
6(b). For parameter values on either side of the bifurcation point a finite number of
stable periodic orbits coexist. The period-doubling cascades can give rise to attracting
chaotic solutions as discussed by Gaspard, Kapral & Nicolis (1984). The continuous
nature of the transition between the two bifurcation diagrams shown in figure 6 as
δ passes through 1 was suggested by Glendinning & Sparrow (1984), and has been
confirmed experimentally and numerically by Healey et al. (1991) in a nonlinear
oscillator. Finally, when δ < 1/2 there remains a similar bifurcation structure to
that shown in figure 6(b). However, the periodic orbits generated are unstable and
therefore not directly observable in an experiment.

3.2. Experimental results

Upon individually varying either V or F no appreciable change in the period of
the mixed-mode flow was found before the system collapsed onto a singly periodic
eight-roll mode. Since it is reasonable to expect a non-trivial relationship between
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Figure 7. The period dependence of the mixed mode. Here F has been used as the abscissa. Since
measurements were taken along a linear path in (V , F) parameter space a qualitatively similar graph
could be obtained using V as the abscissa. A logarithmic form could not be fitted to the results and
the solid line drawn through the data points serves only to guide the eye.

experimental control parameters and those of an ordinary differential equation model,
we used alternative paths in the experimental control parameter plane that entailed a
simultaneous variation of both parameters, in search of a definite change in period.
By doing so, a monotonic increase in the period of the mixed mode was revealed. A
systematic study of the period of oscillation along a straight path in parameter space
between (V , F) = (1.745, 1.512) and (1.575, 1.401) was undertaken, and the results are
presented in figure 7. The period was measured using the autocorrelation function
of time series such as that shown in figure 4. Over the range investigated the period
rose from 82 to 606 s, at which point the system collapsed back onto a singly periodic
eight-roll flow. The gain in period was manifested as an increasing persistence of the
high-frequency oscillations.

The sequence of events described for the mixed-mode flow is analogous to the
homoclinic approach of a periodic orbit to a saddle-focus when δ > 1. In the ab-
stract model the period of the orbit tends to infinity by winding itself around the
unstable fixed point, and such behaviour was manifested as increasingly persistent
high-frequency oscillations. However, neither of the control parameters could be indi-
vidually related to the model parameter µ. Rather, the linear path traversed in (V , F)
parameter space corresponded to a seemingly monotonic variation of µ. As suggested
by Gaspard (1990), an attempt was made to fit a logarithmic curve of the form

t = t0 + α ln (F − Fc)
to the results, where t is the period of oscillation, t0 and α are fitting parameters, F
is the non-dimensional frequency and Fc = 1.4 was the critical frequency at which
the system collapsed onto another state. The curve fitting routine used a gradient
expansion algorithm to compute a nonlinear least-squares fit to the logarithmic func-
tion. However, it was not possible to obtain a fit to the analytical form, indicating a
nonlinear relation between abstract and experimental parameters over the region of
parameter space investigated.

Further support for this interpretation is provided by the phase portrait presented
in figure 8, which was reconstructed from a time series taken at (V , F) = (1.642, 1.443)
using the now standard technique of method of delays augmented with singular value
decomposition suggested by Broomhead & King (1986). This technique calculates an
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Figure 8. Phase portrait representation of the mixed-mode dynamics, reconstructed from a time
series taken at (V , F) = (1.642, 1.443). S1, S2 and S3 are projection axes for the first three singular
vectors.

optimal basis for the projection of the attractor which has been reconstructed from
the time series, and the reader is referred to Mullin (1993) for further details. The
reconstructed attractor in figure 8 has been plotted on a coordinate system of the
first three singular vectors and it shows that the motion can be represented as taking
place near a saddle-focus in the reconstructed phase space. At its centre the attractor
contains an unstable fixed point corresponding to ten-roll flow. The initial part of the
mixed-mode oscillation, in which there is a transition from a ten-roll flow to a mixed
eight/ten-roll state, is represented by a trajectory departing vertically from the centre.
The subsequent return to a steady ten-roll flow is then portrayed by orbits spiralling
in towards the unstable fixed point. Shading in the phase portrait indicates the rate
of change along a trajectory, with dark being fast and light being slow. The high
concentration of points near the centre of the attractor indicates that the trajectories
spend a relatively long time in the region of the unstable fixed point, consistent with
δ being greater than 1.

On traversing a linear path in parameter space parallel to that previously followed,
between (V , F) = (1.745, 1.495) and (1.575, 1.384), the evolution of the mixed-mode
flow was found to change significantly. Rather than displaying a monotonic increase
in period, the dynamics first became disordered. The seemingly chaotic behaviour
is illustrated by the time series presented in figure 9. In contrast to the time series
presented in figure 4, it can be seen that the high-frequency oscillations persisted for
irregular intervals. As the parameters were further reduced the system then collapsed
back onto the singly periodic mode presented in figure 10(a). This flow was again
a mixed eight/ten-roll state, and was not a transient but persisted over an extended
region of parameter space. Upon repeating the traverse of parameter space a number
of times the mixed-mode flow was observed to collapse onto several different periodic
flows comprising both eight and ten convection rolls. Image sequences of two other
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Figure 9. Seemingly chaotic time series taken from the mixed-mode at (V , F) = (1.655, 1.435).

such flows are shown in figures 10(b) and 10(c), both of which coexisted with that
shown in figure 10(a). These flows are also seen to contain ‘defects’ where there is a
discontinuity in the number of convection rolls.

The sequence of events along the alternative path in parameter space is consistent
with the model problem of Glendinning & Sparrow when 1/2 < δ < 1. As illustrated
in figure 6, under these circumstances a finite number of stable periodic orbits
can coexist on either side of the homoclinic bifurcation point. Such solutions were
manifested as the coexisting periodic flows presented in figure 10. Furthermore,
within this range of δ chaotic solutions are known to arise through period-doubling
bifurcations. In the experiment it was not possible to identify a definite period-
doubling sequence as the mechanism by which this behaviour arose. In principle such
behaviour must have existed, but presumably over such a small parameter range that
it could not be resolved. However, the observation of irregular mixed-mode behaviour
is consistent with the existence of such chaotic solutions.

The experimental results presented here provide a strong body of evidence for the
existence of Shil’nikov dynamics in the liquid-crystal cell. An important point of note,
however, is that in the Shil’nikov model the transition between bifurcation sequences
from δ > 1 to δ < 1 is a smooth one. This has been observed both experimentally
and numerically by Healey et al. (1991) in a Van der Pol oscillator, whose behaviour
is governed by ordinary differential equations. For the liquid-crystal cell, a system
governed by partial differential equations, there was no obvious relation between the
two experimental parameters V and F and the parameters µ and δ in the model.
Thus it was unclear how a linear path in (V , F) parameter space traversed the two-
dimensional (µ, δ) bifurcation set of the abstract system. This being the case, it was
impractical to conduct more detailed investigations of the transition between the two
qualitatively different regimes described, but the evidence of the qualitative change in
the solution structure is consistent with a change from δ > 1 to δ < 1.

4. Experimental observation of a gluing bifurcation
In a parameter regime surrounding V = 0.990 and F = 0.750 there existed be-

haviour consistent with another form of homoclinic bifurcation, which is distinctly
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Figure 10. Singly periodic flows arising from the collapse of the mixed mode. In each case, viewing
the images from left to right and then back again corresponds to one oscillation. The flows presented
in (a), (b) and (c) coexisted with each other.

different from that previously described. Here, using F as the bifurcation parameter,
investigations focused on a pair of symmetry-broken time-dependent eight-roll flows,
shown in figure 11. The time-dependent states have been labelled 0 and 1, and were
characterized by a periodic ‘tilting’ of the convection rolls in one half of the flow
domain, with a typical period of 36 s. These flows existed as secondary modes that
could be obtained by virtue of a discontinuous change in the control parameters, and
were related to each other through a mid-plane reflection symmetry. At low enough
values of F the 0 and 1 modes could no longer be realized, and were replaced by a
large-amplitude periodic solution, called the 01 mode, which typically had a period
of 70 s. A sequence of images taken from the 01 mode, which comprised alternate
tilting in each half of the flow domain, is presented in figure 12.

The sequence of events described is suggestive of a ‘gluing bifurcation’. A description
of gluing bifurcations is given in the next subsection, followed by a presentation of
more detailed experimental results.
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Figure 11. Sequences of images taken from the singly periodic 0 and 1 modes. (a) The singly
periodic mode 0. (b) The singly periodic mode 1. Viewing the images from left to right and then
back again corresponds to one oscillation.

4.1. Gluing bifurcations

The term ‘gluing bifurcation’ refers to a homoclinic bifurcation in which a pair of
periodic orbits come together at a saddle point and form a large periodic orbit that
is essentially a combination of the separate orbits, and was introduced by Coullet,
Gambaudo & Tresser (1984). As such, the two initial orbits can be thought of as
having been glued together at the saddle point as a parameter is changed. This
behaviour typically occurs in systems of ordinary differential equations possessing a
reflection symmetry that maps a saddle point onto itself. In such systems the existence
of an orbit homoclinic to the saddle point requires the existence of another, which is
the image of the first under the reflection.

In a three-dimensional system with a reflection symmetry, a gluing bifurcation
can occur in one of three configurations. Two of these, the ‘figure of eight’ and
‘butterfly’ configurations, are presented in figures 13(a) and 13(b) respectively. The
third configuration involves a pair of orbits homoclinic to a saddle-focus (Gambaudo,
Glendinning & Tresser 1984) and is not considered here. Assuming the saddle point
to have an unstable eigenvalue λ1 and a pair of stable eigenvalues −λ3 < −λ2 < 0,
then the value of δ = λ2/λ1 is significant. If δ > 1 a gluing bifurcation occurs for both
configurations (Coullet et al. 1984; Gambaudo, Glendinning & Tresser 1985) and
the orbits involved are stable. For δ < 1 a gluing bifurcation occurs for the figure-
of-eight configuration, but the orbits involved are unstable and cannot be realized
in an experiment (Glendinning 1989). No gluing bifurcation occurs for the butterfly
configuration with δ < 1. Instead a pair of unstable homoclinic orbits arise through
a homoclinic explosion and no large-amplitude periodic solution exists beyond the
bifurcation point (Sparrow 1982).

In the absence of perfect reflection symmetry a gluing bifurcation has a codimension
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Figure 12. A sequence of images taken from the singly periodic mode 01.

of two, since one parameter is required to control the homoclinic connection of
each periodic orbit. A bifurcation set for the imperfect figure-of-eight and butterfly
configurations with δ > 1 is shown in figure 14(a). It comprises a two-dimensional
parameter plot, in which it is assumed that independent control of the homoclinic
connections is provided by the parameters µ0 and µ1. Along µ0 = µ1 the system is
symmetric. As this path is traversed a gluing bifurcation occurs at the origin, in
which the stable orbits 0 and 1 combine to form the stable 01 orbit, which exists in
the unshaded region of figure 14(a) where µ1, µ2 > 0. If an asymmetric parameter
path is followed a more complicated bifurcation sequence occurs. For µ0, µ1 < 0 the
homoclinic approaches of the 0 and 1 orbits take place as µ0 or µ1 respectively tend to
zero. Upon crossing an axis one of the orbits is destroyed in a homoclinic bifurcation,
while the other persists. Within the shaded regions there exists an intricate sequence of
homoclinic bifurcations that create and destroy complicated periodic orbits (Turaev
& Shil’nikov 1987; Gambaudo, Glendinning & Tresser 1987). The nature of this
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Figure 13. Gluing bifurcations at a saddle point x0. (a) Figure of eight. (b) Butterfly.

l1 (b)(a)

0 01

0 and 1 1

l0

l1

0 01

0 and 1 1

l0

A

B

C

Rotation
number
1–1/2

Rotation
number

0–1/2

Figure 14. (a) Bifurcation set for imperfect figure-of-eight and butterfly gluing bifurcations with
δ > 1. (b) Detailed bifurcation set for the imperfect butterfly gluing bifurcation with δ > 1.

sequence is dependent on the configuration, figure of eight or butterfly, and the
orientability (twist) of the orbits (see Gambaudo et al. 1987; Wiggins 1988).

A more detailed diagram for the butterfly configuration with orientable orbits is
presented in figure 14(b). In this case the shaded regions µ0 < 0, µ1 > 0 and µ0 > 0,
µ1 < 0 in figure 14(a) contain trivial dynamics as discussed by Glendinning (1988).
However, when µ0 and µ1 are both positive, at any parameter value within the shaded
regions there is at most one stable periodic orbit. The trajectory of this orbit may be
represented by a rotation number that can vary continuously and monotonically with
one parameter when the other is held fixed. For example, if an asymmetric parameter
path is traversed such as that shown through the points A, B and C in figure 14(b), an
011 orbit with rotation number 2/3 can exist within the shaded region, corresponding
to a trajectory that performs two 1 orbits for each 0 orbit. The rotation number of an
orbit can become irrational, corresponding to an aperiodic, but not chaotic, solution.

Behaviour associated with gluing bifurcations has been reported in numerical
models of fluid systems by Rucklidge (1992) and has been observed experimentally in
optothermal nonlinear devices by Herrero et al. (1998). To the best of our knowledge
there has been no clear observation of such behaviour in an experimental fluid system.
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Figure 15. (a) Period dependence of the 0 and 1 modes. (b) Period dependence of the 01 mode.
The fitted curves for the 0 and 01 modes are logarithmic and were obtained using a nonlinear
least-squares fitting routine. The solid line drawn through the data points for the 1 mode serves
only to guide the eye.

4.2. Experimental results

The value of V was fixed at 0.990 and F was used as the bifurcation parameter. The
0 mode was realized first, as this could be readily found. As F was reduced the period
increased monotonically from 35.3 s towards 37.5 s at FA = 0.743, and this behaviour
is plotted in figure 15(a). Below FA the 0 mode could no longer be maintained and the
system jumped catastrophically onto the 1 mode, which had a period of 38.7 s. As F
was further reduced the period of the 1 mode was found to increase to 40.2 s and then
decrease to 39.4 s at FB = 0.727, as shown in figure 15(a). Below FB the 1 mode could
no longer be maintained and the pattern comprised a seemingly random number of 1
oscillations for each 0 oscillation. The transition to irregular behaviour was reversible,
so that the 1 mode could be regained by smoothly increasing F above FB .

Upon reducing F below the critical value FC = 0.719 the 01 mode was realized,
in which convection rolls tilted alternately in each half of the flow domain. The
transition to the 01 mode from the irregular regime was reversible, so that irregular
behaviour could be regained by increasing F through FC . In addition, the period
of the 01 mode was found to increase monotonically from 73.0 to 87.3 s as F was
increased towards the critical value FC , as shown in figure 15(b).

The sequence of events described is analogous to an imperfect gluing bifurcation
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Figure 16. (a) Time series of irregular behaviour taken at F = 0.725. (b) Time series taken from
the 011 mode at F = 0.723. The peaks and troughs respectively correspond to 1 and 0 oscillations.

in the butterfly configuration. Within the context of this model the 0 and 1 modes
correspond to periodic orbits that combine to form a large-amplitude orbit, manifested
as the 01 mode. Decreasing F was equivalent to traversing the asymmetric parameter
path drawn in figure 14(b), and the parameter values FA, FB and FC correspond to the
points of homoclinic bifurcation labelled A, B and C respectively. Using the nonlinear
least-squares curve fitting routine described earlier in the paper, the increase in period
of the 0 and 01 modes preceding their disappearance was found to be logarithmic,
consistent with these flows undergoing a homoclinic bifurcation (Gaspard 1990).
However, the same behaviour could not be clearly identified for the 1 mode.

By analogy with the model of a gluing bifurcation, disconnection of the bifurcation
sequence suggested a complicated solution structure may exist in the parameter range
FB < F < FC . A detailed study of this parameter range was undertaken. To illustrate
the nature of the dynamics in this regime, a time series taken at F = 0.725 is
presented in figure 16(a). The time series was obtained using the technique described
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in the previous section, and the location of the selected intensity maximum was
(x, y) = (0,−25). In the time series ‘troughs’ and ‘peaks’ respectively correspond to 0
and 1 oscillations, and examples have been labelled in figure 16. It can be seen that the
flow performed a seemingly random number of 1 oscillations for each 0 oscillation.
As F was decreased from FB to FC the average number of 1 oscillations for each
0 oscillation was observed to decrease. Furthermore, at F = 0.723 an 011 mode was
revealed, in which the flow typically performed two 1 oscillations for each 0 oscillation.
A time series taken from this flow is presented in figure 16(b). It was not possible to
realize a flow that performed more than one 0 oscillation for each 1 oscillation.

The behaviour in the parameter regime between FB and FC further supports
the analogy with a gluing bifurcation in the butterfly configuration. Observations
of irregular flows correspond to having realized solutions with irrational rotation
numbers. In principal a rotation number can be associated with each of the flows
realized. However, the presence of thermal noise, which is known to have pronounced
effects on electroconvection (Rehberg et al. 1991), was sufficient to mask the details
of the motion so that it proved to be very difficult to obtain reliable quantitative
estimates of the dynamics. The decrease in the average number of 1 oscillations for
each 0 oscillation corresponds to the rotation number decreasing from 1 to 1/2 as the
path between points B and C is traversed in figure 14(b). Finally, the existence of the
011 mode corresponds to the realization of a solution with rotation number of 2/3.

Results presented in this section strongly support the existence of a gluing bifurca-
tion in the liquid-crystal cell. The presence of thermal noise in the system prevented a
more quantitative investigation of the solution structure. Nevertheless, the qualitative
and quantitative measurements presented here provide good agreement with theory.

5. Conclusions
We have demonstrated that homoclinic bifurcations can model some aspects of the

transition to disordered motion in a complex fluid. Previous studies have typically
concerned large-aspect-ratio systems containing many convection rolls. For these
systems recent progress has been made using techniques for analysing pattern-forming
instabilities and the consideration of ‘defect dynamics’ (Plaut et al. 1997; Pesch & Behn
1998), and it is interesting to note that some features of defect structure persist in our
small-aspect-ratio system. In our view, progress with the equations of motion in the
small-aspect-ratio case will require numerical simulation and although this remains
a significant challenge to computation Tavener, Mullin & Blake (2001) have made
advances. Nevertheless, by using careful experimental procedure we have uncovered
complicated dynamical motion in a small-aspect-ratio system that can be directly
related to relatively simple low-dimensional models.

This research was funded by the EPSRC and SHARP Labs Europe. T. P. was
supported by The Packard Foundation during the writing up of this work.
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